Алгебраическое интерполирование Эрмита – Биркгофа с одним специальным узлом

Худяков Андрей Павлови, Трофимук Александр Александров УО "Брестский государственный университет имени А.С. Пушкина"

В работе [1] по общей чебышевской системе функций $\phi_0(x), \phi_1(x), ..., \phi_{n+1}(x), x \in T \subset \mathbb{R}$, построен обобщенный интерполяционный многочлен Эрмита –Биркгофа вида

$$\tilde{L}_{n+1}(x) = L_n(x) + \frac{\Omega_{n+1}(x)D_{n+1}(f; x_{n+1})}{D_{n+1}(\varphi_{n+1}; x_{n+1})},$$
(1)

где $L_n(x)$ — многочлен Лагранжа по рассматриваемой системе функций $\{\phi_k(x)\}$, $\Omega_{n+1}(x)$ — многочлен степени n+1 по той же системе, со старшим коэффициентом, равным 1, удовлетворяющий интерполяционным условиям вида $\Omega_{n+1}(x_k)=0$ $(k=0,1,\ldots,n)$, а $D_{n+1}f(x)$ является линейным дифференциальным оператором порядка n+1, аннулирующим первые базисные функции чебышевской системы. Многочлен (1) удовлетворяет интерполяционным условиям

$$\tilde{L}_{n+1}(x_i) = f(x_i) \ (i = 0, 1, ..., n); \ D_{n+1}(\tilde{L}_{n+1}; x_{n+1}) = D_{n+1}(f; x_{n+1})$$

и является точным для многочленов вида

$$P_{n+1}(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x) + \dots + c_{n+1} \varphi_{n+1}(x),$$

где $c_0, c_1, \ldots, c_{n+1}$ — произвольные числа. Интерполяционный узел x_{n+1} может совпадать с одним из узлов x_0, x_1, \ldots, x_n . Очевидно, порядок оператора $D_{n+1}f(x)$ здесь зависит от числа узлов.

В алгебраическом случае многочлен $L_n(x)$ совпадает с алгебраическим интерполяционным многочленом Лагранжа, $\Omega_{n+1}(x)=\omega_n(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$, а дифференциальный оператор $D_{n+1}f(x)\equiv f^{(n+1)}(x)$. Так как $D_{n+1}(\phi_{n+1};x_{n+1})=(n+1)!$ при $\phi_{n+1}(x)=x^{n+1}$, то алгебраический многочлен $\tilde{L}_{n+1}(x)$, удовлетворяющий условиям

$$\tilde{L}_{n+1}(x_k) = f(x_k) \quad (k = 0, 1, ..., n); \quad \tilde{L}_{n+1}^{(n+1)}(x_{n+1}) = f^{(n+1)}(x_{n+1}),$$

имеет вид

$$\tilde{L}_{n+1}(f;x) = L_n(f;x) + \frac{\omega_n(x)f^{(n+1)}(x_{n+1})}{(n+1)!}$$
(2)

и является точным для алгебраических многочленов степени не выше n+1.

Получим представление и оценку погрешности для формулы (2). Будем предполагать, что функция f(x) непрерывно дифференцируема n+2 раз на промежутке T=(a,b).

Теорема 1. Представление погрешности интерполяционной формулы (2) имеет вид

$$f(x) - \tilde{L}_{n+1}(x) = \frac{f^{(n+2)}(\xi)(\eta - x_{n+1})}{(n+1)!} \omega_n(x),$$

ε∂e ξ, η∈T.

Обозначим $M_n = \max_{\theta \in T} \left| f^{(n+2)}(\theta) \right|, \quad C_n = \left| \omega_n(x) \right|.$ Так как $\left| \eta - x_{n+1} \right| \leq b - a$, то для формулы (2) имеет место оценка погрешности

$$\left| f(x) - \tilde{L}_{n+1}(x) \right| \le \frac{(b-a)M_nC_n}{(n+1)!}.$$

Приведем далее аналогичную алгебраическую интерполяционную формулу, в которую входит значение производной порядка m, не зависящего от количества узлов. Введем обозначения $\omega_{n,k}(x)=(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n), \quad a_k=\omega_{n,k}^{(m)}(x_{n+1}),$ $\tilde{x}_k=a_kx_{n+1}+m\omega_{n,k}^{(m-1)}(x_{n+1}) \quad (k=0,1,\ldots,n).$ Будем предполагать, что $\omega_n^{(m)}(x_{n+1})\neq 0.$

Теорема 2. Пусть $1 \le m \le n$. Алгебраический многочлен степени n+1

$$\tilde{L}_{n+1}(f;x) = \sum_{k=0}^{n} \frac{\omega_{n,k}(x)(a_k x - \tilde{x}_k)}{\omega_{n,k}(x_k)(a_k x_k - \tilde{x}_k)} f(x_k) + \frac{\omega_n(x)}{\omega_n^{(m)}(x_{n+1})} f^{(m)}(x_{n+1})$$
(3)

удовлетворяет интерполяционным условиям

$$\tilde{L}_{n+1}(x_k) = f(x_k) \quad (k = 0, 1, ..., n); \quad \tilde{L}_{n+1}^{(m)}(x_{n+1}) = f^{(m)}(x_{n+1}),$$
(4)

и является точным для алгебраических многочленов степени не выше n+1.

Получим представление погрешности для формулы (3). Будем предполагать, что

$$f \in C_T^{n+1}$$
. Введем обозначение $\alpha = \frac{(n+1)!}{\omega_n^{(m)}(x_{n+1})} \left[\sum_{k=0}^n \frac{a_k f(x_k)}{\omega_{n,k}(x_k)} - f^{(m)}(x_{n+1}) \right]$.

Теорема 3. Погрешность интерполяционного многочлена (3) задается равенством

$$f(x) - \tilde{L}_{n+1}(x) = \frac{f^{(n+1)}(\xi) + \alpha}{(n+1)!} \omega_n(x),$$

где $\xi \in T$.

Введем обозначения $M_n = \max_{\theta \in T} \left| f^{(n+1)}(\theta) + \alpha \right|, \quad C_n = \left| \omega_n(x) \right|.$ Для интерполяционной формулы (3) справедлива оценка погрешности

$$\left| f(x) - \tilde{L}_{n+1}(x) \right| \le \frac{M_n C_n}{(n+1)!}$$

Замечание. Задача построения алгебраического интерполяционного многочлена, удовлетворяющего интерполяционным условиям вида (4) не всегда однозначно разрешима. Например, в случае узлов $x_0 = 1$, $x_1 = 3$, $x_2 = 2$ и функции, такой что $f(x_0) = 3$, $f(x_1) = 13$, $f'(x_2) = 5$, существует как минимум два алгебраических многочлена, удовлетворяющих условиям $P(x_k) = f(x_k)$ (k = 0,1); $P'(x_2) = f'(x_2)$. Первый из них $-P_1(x) = x^2 + x + 1$, второй $-P_2(x) = 2x^2 - 3x + 4$. Интерполяционный многочлен (3) в данном случае не существует, так как $\omega_1'(x_2) = 0$.

Республиканская научно-практическая интернет-конференция молодых исследователей MediaLex-2017

Алгебраические интерполяционные формулы Эрмита – Биркгофа для функций скалярного аргумента и операторов построены и исследованы также в работах [2, 3].

Благодарности. Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф16М-055).

СПИСОК ЛИТЕРАТУРЫ

- 1. Худяков, А.П. Обобщённые интерполяционные формулы Эрмита –Биркгофа для случая чебышевских систем функций / А.П. Худяков, Л.А. Янович // Весці НАН Беларусі. Серыя фізіка-матэматычных навук. 2015. № 2. С. 5–14.
- 2. Турецкий, А.Х. Теория интерполирования в задачах / А.Х. Турецкий. Минск : Вышэйшая школа, 1968. 320 с.
- 3. Makarov, V.L. Methods of Operator Interpolation / V.L. Makarov, V.V. Khlobystov, L.A. Yanovich. Київ : Ін-т математики Нац. акад. наук України, 2010. Т. 83. 517 с.