Приближенное решение операторных уравнений методом итераций неявного типа

Рак Марина Петровна

УО «Брестский государственный университет им. А.С. Пушкина»

Постановка задачи. В действительном гильбертовом пространстве H решается уравнение І рода

$$Ax = y, (1)$$

где A — ограниченный, положительный, самосопряженный оператор, для которого нуль не является его собственным значением. Причем нуль принадлежит спектру оператора, т.е. задача некорректна. Предположим, что при точной правой части у существует единственное решение x уравнения (1). Для отыскания решения уравнения (1) применим итерационный метод

$$(E + \alpha A^2)x_{n+1} = (E - \alpha A^2)x_n + 2\alpha Ay, x_0 = 0.$$
 (2)

Однако на практике часто правая часть у уравнения (1) бывает неизвестной, а вместо у известно приближение y_{δ} : $||y - y_{\delta}|| \le \delta$, тогда метод (2) примет вид

$$(E + \alpha A^2) x_{n+1,\delta} = (E - \alpha A^2) x_{n,\delta} + 2\alpha A y_{\delta}, \ x_{0,\delta} = 0.$$
 (3)

Для метода (3) изучен априорный выбор числа итераций. Доказано, что метод (3) сходится в исходной норме гильбертова пространства при условии $\alpha > 0$, если число итераций n выбирать в зависимости от δ , так, чтобы $n^{\frac{1}{2}}\delta \to 0$, $n \to \infty$, $\delta \to 0$.

В предположении, что точное решение x истокопредставимо, т.е. $x = A^s z, s > 0$ при условии $\alpha > 0$ получена оценка погрешности для метода (3)

$$||x - x_{n,\delta}|| \le s^{\frac{s}{2}} (2nae)^{-\frac{s}{2}} ||x|| + 4n^{\frac{1}{2}} \alpha^{\frac{1}{2}} \delta.$$
 (4)

Оценка погрешности (4) минимизирована по n. Найдено

$$n_{\text{OUT}} = \frac{s+2}{s+1} 2^{-\frac{s+4}{s+1}} \alpha^{-1} ||z||_{s+1}^{\frac{2}{s+1}} \delta^{-\frac{2}{s+1}}.$$
 (5)

Подставив $n_{\text{опт}}$ в оценку (4), получим оптимальную оценку погрешности для метода (3)

$$\|x - x_{n,\delta}\|_{\text{off}} \le (1+s)2^{\frac{s}{s+1}} \left(\frac{s}{2}\right)^{-\frac{s}{2(s+1)}} e^{-\frac{s}{2(s+1)}} \delta^{\frac{s}{s+1}} \|z\|^{\frac{1}{s+1}}.$$
 (6)

Сравнение метода (3) с явным методом итераций [1]

$$x_{n+1} = (E - \alpha A)x_{n+1} + \alpha y_{n+1} x_{n+2} = 0$$
 (7)

 $x_{n+1,\delta} = (E - \alpha A) x_{n,\delta} + \alpha y_{\delta}, x_{0,\delta} = 0$ (7) показывает, что порядки их оптимальных погрешностей одинаковы, т.е. имеют порядок $O(\delta^{s/(s+1)})$, но неявные методы обладают следующим важным достоинством. В явных методах на параметр α накладывается ограничение сверху (для метода (7)

 $0 < lpha \leq \frac{5}{4\|A\|}$), что может привести к необходимости большого числа итераций.

В неявных методах $\alpha > 0$, поэтому за счет выбора α оптимальную оценку можно получить уже на первом шаге итераций.

В работе изучен случай неединственного решения, т.е. когда $\lambda=0$ является собственным значением оператора A. Показано, что в этом случае метод (2) сходится к нормальному решению.

Априорный выбор числа итераций был изучен в предположении, что точное решение x истокопредставимо, т.е. в этом предположении была получена оценка погрешности (4) и найден априорный момент останова $n_{\text{опт}}$. Если нет сведений об истокопредставимости точного решения, то нельзя получить оценку погрешности (4) и найти $n_{\text{опт}}$. Использование энергетической нормы $\|x\|_A = \sqrt{(Ax,x)}$ позволяет получить оценку погрешности и найти $n_{\text{опт}}$, не требуя истокопредставимости точного решения.

Метод (3) можно сделать эффективным и тогда, когда нет сведений об истокопредставимости точного решения, если воспользоваться правилом останова по невязке. В работе обоснована возможность применения правила останова по невязке

$$||Ax_{n,\delta} - y_{\delta}|| > \varepsilon, (n < m), ||Ax_{m,\delta} - y_{\delta}|| \le \varepsilon,$$
 (8)

Доказаны теоремы.

Теорема 1. Пусть $A = A^* \ge 0$, $||A|| \le M$ и пусть момент останова $m = m(\delta)$ в методе (3) выбирается по правилу (8). Тогда $x_{m,\delta} \to x$ при $\delta \to 0$.

Теорема 2. Пусть выполняются условия теоремы 2. Если $x=A^sz$, s>0, то справедливы оценки $m(\delta) \leq 1 + \frac{s+1}{2\alpha e} \left[\frac{\|z\|}{(b-1)\delta} \right]^{\frac{2}{s+1}}$,

$$||x_{m,\delta} - x|| \le [(b+1)\delta]^{\frac{s}{s+1}} ||z||^{\frac{1}{s+1}} + 4\alpha^{\frac{1}{2}} \left\{ 1 + \frac{s+1}{2\alpha e} \left[\frac{||z||}{(b-1)\delta} \right]^{\frac{2}{s+1}} \right\}^{\frac{1}{2}} \delta. \quad (9)$$

Замечание. Хотя формулировка теоремы 2 дается с указанием степени истокопредставимости s и истокопредставимого элемента z, на практике их значения не потребуются, так как они не содержатся в правиле останова (8).

Метод (3) можно сделать эффективным и тогда, когда нет сведений об истокопредставимости точного решения, если воспользоваться правилом останова по соседним приближениям

$$||z_n - z_{n+1}|| > \varepsilon, (n < m), ||z_m - z_{m+1}|| \le \varepsilon,$$
 (10)

где ε — заданное до начала вычислений положительное число (уровень останова). Для решения задачи (1) используем метод

$$z_{n+1} = (E + \alpha (A^*A)^2)^{-1} [(E - \alpha (A^*A)^2)z_n + \alpha (A^*A)A^*y_\delta] + (E + \alpha (A^*A)^2)^{-1} (E - \alpha (A^*A)^2)u_n, \ z_0 = 0.$$
 (11)

Здесь u_n – ошибки вычисления итераций, $||u_n|| \le \beta$. Обозначим C = (E + $+\alpha(A^*A)^2$) $^{-1}(E-\alpha(A^*A)^2)$, $B=2\alpha(E+\alpha(A^*A)^2)^{-1}(A^*A)A^*$. Метод (11) примет вид $z_{n+1} = Cz_n + By_{\delta} + Cu_n$.

Обоснована возможность применения правила останова (10) к методу (11). Доказана теорема

Теорема 3. Пусть уровень останова $\varepsilon = \varepsilon(\delta, \beta)$ выбирается как функция от уровней δ и β норм погрешностей $y-y_{\delta}$ и u_{n} . Тогда справедливы следующие утверждения:

- а) если $\varepsilon(\delta,\beta) > 2\|C\|\beta$, то момент останова т определен при любом начальном приближении $z_0 \in H$ и любых y_δ и u_n , удовлетворяющих условиям $\|y - y_\delta\| \le \delta$, $||u_n|| \leq \beta$;
 - δ) если $\varepsilon(\delta,\beta)>\|B\|\delta+2\|C\|\beta$, то справедлива оценка

$$m \leq \frac{\|z_0 - x\|^2}{(\varepsilon - \|B\|\delta - 2\|C\|\beta)(\varepsilon - \|B\|\delta)};$$

 $m \leq \frac{\|z_0 - x\|^2}{(\varepsilon - \|B\|\delta - 2\|C\|\beta)(\varepsilon - \|B\|\delta)};$ если, кроме того, $\varepsilon(\delta, \beta) \to 0$, $\delta, \beta \to 0$ и $\varepsilon(\delta, \beta) \geq d(\|B\|\delta + \|C\|\beta^p)$, где d > 1, $p \in (0,1), mo$

$$\lim_{\delta,\beta\to 0} ||z_m - x|| = 0.$$

СПИСОК ЛИТЕРАТУРЫ

1. Савчук, В. Ф. Регуляризация операторных уравнений в гильбертовом пространстве / В. Ф. Савчук, О. В. Матысик. – Брест. гос. ун-т, 2008. – 196 с.